4.7 Article

Automated data-intensive forecasting of plant phenology throughout the United States

期刊

ECOLOGICAL APPLICATIONS
卷 30, 期 1, 页码 -

出版社

WILEY
DOI: 10.1002/eap.2025

关键词

budburst; climate; decision making; ecology; flowering; phenophase

资金

  1. Gordon and Betty Moore Foundation's Data-Driven Discovery Initiative [GBMF4563]
  2. USA National Phenology Network

向作者/读者索取更多资源

Phenology, the timing of cyclical and seasonal natural phenomena such as flowering and leaf out, is an integral part of ecological systems with impacts on human activities like environmental management, tourism, and agriculture. As a result, there are numerous potential applications for actionable predictions of when phenological events will occur. However, despite the availability of phenological data with large spatial, temporal, and taxonomic extents, and numerous phenology models, there have been no automated species-level forecasts of plant phenology. This is due in part to the challenges of building a system that integrates large volumes of climate observations and forecasts, uses that data to fit models and make predictions for large numbers of species, and consistently disseminates the results of these forecasts in interpretable ways. Here, we describe a new near-term phenology-forecasting system that makes predictions for the timing of budburst, flowers, ripe fruit, and fall colors for 78 species across the United States up to 6 months in advance and is updated every four days. We use the lessons learned in developing this system to provide guidance developing large-scale near-term ecological forecast systems more generally, to help advance the use of automated forecasting in ecology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据