4.7 Article

Superiority of a novel flow-electrode capacitive deionization (FCDI) based on a battery material at high applied voltage

期刊

DESALINATION
卷 468, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.desal.2019.114080

关键词

Flow-electrode; Capacitive deionization; Intercalation material; Copper hexacyanoferrate; Salt removal efficiency

资金

  1. National Natural Science Foundation of China (NSFC) [21377130, 51425405]

向作者/读者索取更多资源

Flow-electrode capacitive deionization (FCDI) provides the opportunity for continuous desalination operation of high concentration saline water. In this study, we firstly report the application of a battery material (a Prussian blue analogue, copper hexacyanoferrate, CuHCF) as flowable electrode in FCDI system, where it is coupled with activated carbon (AC). Its desalination performance under different voltage is evaluated when dealing with 10 g L-1 NaCI solution. Results show that the salt removal rate and salt removal efficiency of the designed FCDI is enhanced as increasing in applied voltage from 1.2 to 2.8 V. Moreover, benefiting from the high capacity of CuHCF material, the novel FCDI based on CuHCF-AC pair shows superiority over conventional FCDI with AC-AC pair when operates at high voltage over 2.0 V (e.g. salt removal rate of 0.12 vs. 0.11 mg cm(-2) min(-1), salt removal efficiency of similar to 91 vs. 84% and current efficiency of similar to 96 vs. 95% at 2.8 V), even though the pH of the concentrated water changes more significantly. The results indicate that FCDI based on CuHCF-AC electrode pair is effective in dealing with high saline water at high voltage. Other sodium ion intercalation material may also be applied in FCDI.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据