4.7 Article

Significantly improved stability of hybrid capacitive deionization using nickel hexacyanoferrate/reduced graphene oxide cathode at low voltage operation

期刊

DESALINATION
卷 468, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.desal.2019.114078

关键词

Faradaic materials; Low-voltage operation; Hybrid capacitive deionization; Stable desalination performance

资金

  1. National Natural Science Foundation of China [21771064]
  2. China Postdoctoral Science Foundation [2019M651682]

向作者/读者索取更多资源

Currently, hybrid capacitive deionization (HCDI) with faradaic material cathode and active carbon (AC) anode has attracted much attention due to its very excellent desalination performance even in highly-concentrated saline water. However, the carbon oxidation reaction occurring at a potential of 0.7-0.9 V in a CDI system still exists at the carbon anode in a HCDI system, which causes the performance degradation during long-term operation. Introducing costly ion exchange membranes has been reported to solve this issue. In this work, we report a more simple and cost-saving approach to improve the desalination performance of membrane-free HCDI cell by using nickel hexacyanoferrate/reduced graphene oxide (NiHCF/rGO) cathode which possesses high theoretic capacity and low Na+ intercalation/extraction potential at a low voltage operation (0.6 V). A high desalination capacity of 22.8 mg g(-1) is achieved for this membrane-free HCDI cell, higher than those for the conventional AC//AC CDI cell. More importantly, the AC//NiHCF/rGO cell shows a stable cycling performance with a capacity retention of 78% at 0.6 V over 100 desalination-regeneration cycles, significantly improved compared with that at 1.2 V. The strategy should provide a helpful guidance for practical CDI operation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据