4.5 Article

Endoplasmic Reticulum Stress and Apoptosis Triggered by Sub-Chronic Lead Exposure in Mice Spleen: a Histopathological Study

期刊

BIOLOGICAL TRACE ELEMENT RESEARCH
卷 178, 期 1, 页码 86-97

出版社

HUMANA PRESS INC
DOI: 10.1007/s12011-016-0912-z

关键词

Lead; Spleen; Grp78; Oxidative stress; Apoptosis; Autophagy

资金

  1. ABOCA s.p.a (Arezzo, Italy) grant
  2. University of Brescia CG fund

向作者/读者索取更多资源

Lead (Pb) is an environmental oncogenic metal that induces immunotoxicity and anaemia. Emerging evidence has linked Pb toxicity with endoplasmic reticulum-driven apoptosis and autophagy. Glucose-regulated protein of 78 kDa (Grp78 or binding immunoglobulin protein (BiP)), a master endoplasmic reticulum chaperone, drives macrophage activation and regulates protein folding and calcium flux in response to heavy metals. The spleen may be involved in Pb poisoning due to its crucial role in erythrocatheresis and immune response, although there are no data to support this theory. Here, we found haematic and histopathological changes in the spleen of mice exposed to medium doses of Pb acetate (200 ppm-1 mM) in drinking water for 45 days. Pb deposition was also detected in organs such as the liver, kidney, brain, bone, blood and faeces, indicating an accumulation of this metal despite relatively short exposure time. Blood Pb content (BBL) reached 21.6 mu g/dL; echinocytes and poikilocytes were found in Pb smears of treated group. Inside the spleen, higher Fe(II) and Fe(III) deposits inside macrophages were observed. Grp78 immunostaining, weakly expressed in spleen cells of control mice, after Pb exposure was specifically restricted to macrophages and megakaryocytes of the marginal zone of red pulp. Furthermore, Pb exposure induced superoxide dismutase 1 (SOD1) expression, cleaved caspase-3 and p62/SQSTM1, consistent with oxidative stress, apoptosis and dysregulated autophagy in spleen compartments. We suggest that even at a middle dose, oral Pb intake induces oxidant iron deposition in the spleen and that this may trigger sustained Grp78 redistribution to cells, thus leading to oxidative and autophagy dysfunction as early local reactions to this dangerous metal.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据