4.7 Article

Image processing algorithms for infield single cotton boll counting and yield prediction

期刊

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compag.2019.104976

关键词

Image segmentation; Object detection; Cotton boll counting; High throughput phenotyping; Linear Hough Transform; Yield estimation

资金

  1. Agricultural Sensing and Robotics Initiative of the College of Engineering of the University of Georgia
  2. College of Agricultural and Environmental Sciences of the University of Georgia
  3. Presidential Interdisciplinary Seed Grant (PISG) at the University of Georgia
  4. Georgia Cotton Commission
  5. Cotton Incorporated
  6. National Robotics Initiative grant (NIFA grant) [2017-67021-25928]

向作者/读者索取更多资源

Cotton boll number is an important component of fiber yield, arguably the most important phenotypic trait to plant breeders and growers alike. In addition, boll number provides a better understanding on the physiological and genetic mechanisms of crop growth and development, facilitating timely decisions on crop management to maximize profit. Traditional in-field cotton boll number counting by visual inspection is time consuming and labor-intensive. In this work, we presented novel image processing algorithms for automatic single cotton boll recognition and counting under natural illumination in the field. A digital camera mounted on a robot platform was used to acquire images with a 45 degrees downward angle on three different days before harvest. A double-thresholding with region growth algorithm combining color and spatial features was applied to segment bolls from background, and three geometric-feature-based algorithms were developed to estimate boll number. Line features detected by linear Hough Transform and the minimum boundary distance between two regions were used to merge disjointed regions split by branches and burrs, respectively. The area and the elongation ratio between major and minor axes were used to separate bolls overlapping in clusters. A total of 210 images captured under sunny and cloudy illumination conditions on three days were used to validate the performance of the cotton boll recognition method, with an F1 score of around 0.98; whereas, the best accuracy for boll counting was around 84.6%. At the whole plot level, fifteen plots were used to build a linear regression model between the estimated boll number and the overall fiber yield with a R-2 value of 0.53. The performance was evaluated by another ten plots with a mean absolute percentage error of 8.92% and a root mean square error of 99 g. The methodology developed in this study provides a means to estimate cotton boll number from color images under field conditions and would be helpful to predict crop yield and understand genetic mechanisms of crop growth.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据