4.7 Article

A partitioned solver to simulate large-displacement fluid-structure interaction of thin plate systems for vibration energy harvesting

期刊

COMPUTERS & STRUCTURES
卷 224, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.compstruc.2019.106110

关键词

Partitioned algorithms; Fluid-structure interaction; Vortex particle methods; Fluttering instability; Self-sustained flapping; Aeroelastic energy harvesting

向作者/读者索取更多资源

A two-dimensional (2D) partitioned solver is extended for large-displacement fluid-structure interaction (FSI) simulations of thin plate systems, particularly to investigate their potential of aeroelastic energy harvesting. The 2D vortex particle method with immersed interface technique and adaptive solution strategy is used for analyzing flow around deformable bodies; three-dimensional edge effects are ignored. The geometrically nonlinear plate motion is analyzed using 2D corotational beam element. The coupled solver is validated on benchmark large-displacement FSI problems such as flag-type flapping of cantilever plates in axial flow and Karman vortex street. The validated solver is used further to perform a comparative study on different cantilever systems to obtain guidelines for the design of experimental set-ups of prototype harvesters. The changes in aerodynamic behavior and flapping pattern of inverted and T-shaped cantilevers with/without tip mass are investigated. The simulations are performed for increasing wind speeds until the permanent deflection mode occurs. The influences of damping ratios are analyzed as preliminary studies to investigate the electrical damping effects of harvesters. The influential parameters such as response amplitude and oscillating frequency are compared to identify not only efficient cantilever harvesters but also an appropriate combination of physical and electrical parameters depending on target wind speeds. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据