4.7 Article

Sequential finite element modelling of lightning arc plasma and composite specimen thermal-electric damage

期刊

COMPUTERS & STRUCTURES
卷 221, 期 -, 页码 48-62

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.compstruc.2019.06.005

关键词

Finite element modelling; Simulation coupling; Lightning strike; Thermal-electric modelling; Mesh generation

资金

  1. EPSRC
  2. EPSRC [1786463] Funding Source: UKRI

向作者/读者索取更多资源

Highly complex phenomena such as lightning strikes require simulation methods capable of capturing many different physics. However, completing this in one simulation is not always desired or possible. In such instances there can be a need for a methodology to transfer loading boundary conditions from one simulation to the next while accounting for the characteristic form of the loading and the dissimilar domain and mesh geometries. Herein, the objective is to combine two models to enable the automatic sequential simulation of a lightning arc and a composite test specimen. The approach is developed using Finite Element models, with a Magnetohydrodynamics model representing the lightning plasma and a thermal-electric model representing the specimen. The specimen mesh and loading boundary conditions are automatically generated based on the predicted output of the preceding plasma model. The precision, run-time and flexibility of the proposed approach is demonstrated, with thermal damage predictions generated in approximately 33 h. Resulting from the integrated modelling capability is the first time prediction of damage representing the test electric boundary conditions rather than assumed specimen boundary conditions (herein using test 'Waveform B'). (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据