4.7 Article

Development of carbon coated NiS2 as positive electrode material for high performance asymmetric supercapacitor

期刊

COMPOSITES PART B-ENGINEERING
卷 177, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compositesb.2019.107373

关键词

Nickel sulphide; Carbon composite; Specific energy; Asymmetric supercapacitor

向作者/读者索取更多资源

Facile synthesis of carbon coated NiS2 composite through one-step hydrothermal process was demonstrated. Three different composites were synthesized (NCC1, NCC2, and NCC3) by changing the stoichiometric ratio of nickel, sulphur and carbon precursor. The particle size and its distribution depend on the amount of carbon precursor and metal sulphides ratio. The carbon coating on metal sulphides significantly augmented the electrochemical properties of the supercapacitor electrodes. It was found that in an optimum ratio of carbon precursor and metal sulphide, the particles were formed uniformly as seen in the NCC2 composites and exhibited the specific capacitance of 2212 F g(-1) at a specific current of 2 A g(-1) in a three-electrode system. An asymmetric supercapacitor (ASC) device was fabricated with NCC2 as positive electrode and thermally reduced graphene oxide as negative electrode. The ASC device showed high specific capacitance of 184.9 F g(-1) at 3 A g(-1) and specific energy of 50.35 Wh Kg(-1) at a specific power of similar to 2.26 kW kg(-1). It showed similar to 83% retention in specific capacitance after 6000 charge-discharge cycles. High specific capacitance, specific energy and specific power of the ASC device confirmed that the NCC2 composite could be used as energy storage electrode materials for supercapacitor applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据