4.5 Article

Decoding disparity categories in 3-dimensional images from fMRI data using functional connectivity patterns

期刊

COGNITIVE NEURODYNAMICS
卷 14, 期 2, 页码 169-179

出版社

SPRINGER
DOI: 10.1007/s11571-019-09557-6

关键词

Binocular disparity; Functional connectivity; fMRI; MVPA

向作者/读者索取更多资源

Humans use binocular disparity to extract depth information from two-dimensional retinal images in a process called stereopsis. Previous studies usually introduce the standard univariate analysis to describe the correlation between disparity level and brain activity within a given brain region based on functional magnetic resonance imaging (fMRI) data. Recently, multivariate pattern analysis has been developed to extract activity patterns across multiple voxels for deciphering categories of binocular disparity. However, the functional connectivity (FC) of patterns based on regions of interest or voxels and their mapping onto disparity category perception remain unknown. The present study extracted functional connectivity patterns for three disparity conditions (crossed disparity, uncrossed disparity, and zero disparity) at distinct spatial scales to decode the binocular disparity. Results of 27 subjects' fMRI data demonstrate that FC features are more discriminatory than traditional voxel activity features in binocular disparity classification. The average binary classification of the whole brain and visual areas are respectively 87% and 79% at single subject level, and thus above the chance level (50%). Our research highlights the importance of exploring functional connectivity patterns to achieve a novel understanding of 3D image processing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据