4.3 Article

MiR-203a-3p inhibits retinal angiogenesis and alleviates proliferative diabetic retinopathy in oxygen-induced retinopathy (OIR) rat model via targeting VEGFA and HIF-1α

出版社

WILEY
DOI: 10.1111/1440-1681.13163

关键词

angiogenesis; HIF-1 alpha; miR-203a-3p; proliferative diabetic retinopathy; VEGFA

资金

  1. Health Special Foundation of Department of Finance, Jilin Province [20181731154]

向作者/读者索取更多资源

Proliferative diabetic retinopathy (PDR) is a common complication of diabetes mellitus, characterized by abnormal retinal angiogenesis. MicroRNA-203-3p (miR-203-3p) was found to be down-regulated in a murine model of proliferative retinopathy. This study was performed to explore the role of miR-203a-3p in retinal angiogenesis of PDR. Firstly, a rat OIR model, which was used to mimic PDR, was established and the OIR rats were treated with scrambled control or miR-203a-3p agomir by intravitreal injection. The results showed that the level of miR-203a-3p was decreased in OIR rats, and forced over-expression of miR-203a-3p inhibited OIR-induced retinal angiogenesis as evidenced by reduced blood vessel profiles and CD31 expression. OIR-induced up-regulation of VEGFA, HIF-alpha, PCNA, and MMPs in the retina was also counteracted by miR-203a-3p. Additionally, high glucose (HG)-induced proliferation, migration and tube formation of human retinal microvascular endothelial cells (HRMECs) were also dampened by the up-regulation of miR-203a-3p. Dual-luciferase reporter assay showed that miR-203a-3p could specifically bind to the 3 ' UTR of VEGFA and HIF-1 alpha. Over-expression of VEGFA or HIF-1 alpha restored the tube formation activity of HRMECs suppressed by miR-203a-3p. In conclusion, our findings demonstrate that up-regulation of miR-203a-3p might inhibit pathological retinal angiogenesis of PDR by targeting VEGFA and HIF-1 alpha.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据