4.7 Article

Does the signal contribution function attain its extrema on the boundary of the area of feasible solutions?

出版社

ELSEVIER
DOI: 10.1016/j.chemolab.2019.103887

关键词

signal contribution function; Multivariate curve resolution; Lawton-Sylvestre plot; Borgen plot; Area of feasible solutions; MCR-Bands; FACPACK

向作者/读者索取更多资源

The signal contribution function (SCF) was introduced by Gemperline in 1999 and Tauler in 2001 in order to study band boundaries of multivariate curve resolution (MCR) methods. In 2010 Rajko pointed out that the extremal profiles of the SCF reproduce the limiting profiles of the Lawton-Sylvestre plots for the case of noise-free two-component systems. This paper mathematically investigates two-component systems and includes a self-contained proof of the SCF-boundary property for two-component systems. It also answers the question if a comparable behavior of the SCF still holds for chemical systems with three components or even more components with respect to their area of feasible solutions. A negative answer is given by presenting a noise-free three-component system for which one of the profiles maximizing the SCF is represented by a point in the interior of the associated area of feasible solutions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据