4.6 Article

Photolytic and Reductive Activations of 2-Arsaethynolate in a Uranium-Triamidoamine Complex: Decarbonylative Arsenic-Group Transfer Reactions and Trapping of a Highly Bent and Reduced Form

期刊

CHEMISTRY-A EUROPEAN JOURNAL
卷 25, 期 62, 页码 14246-14252

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.201903973

关键词

arsaethynolate; carbenes; decarbonylation; density functional calculations; uranium

资金

  1. UK EPSRC [EP/M027015/1, EP/P001286/1]
  2. ERC [CoG612724]
  3. Royal Society [UF110005]
  4. Leverhulme Trust [RF/2018-545\4]
  5. National Nuclear Laboratory
  6. University of Regensburg
  7. Deutsche Forschungsgemeinschaft
  8. COST Action [CM1006]
  9. National EPSRC UK EPR Facility
  10. University of Manchester
  11. EPSRC [EP/M027015/1] Funding Source: UKRI

向作者/读者索取更多资源

Little is known about the chemistry of the 2-arsaethynolate anion, but to date it has exclusively undergone fragmentation reactions when reduced. Herein, we report the synthesis of [U(Tren(TIPS))(OCAs)] (2, Tren(TIPS)=N(CH(2)CH(2)NSiiPr(3))(3)), which is the first isolable actinide-2-arsaethynolate linkage. UV-photolysis of 2 results in decarbonylation, but the putative [U(Tren(TIPS))(As)] product was not isolated and instead only [{U(Tren(TIPS))}(2)(mu-eta(2):eta(2)-As2H2)] (3) was formed. In contrast, reduction of 2 with [U(Tren(TIPS))] gave the mixed-valence arsenido [{U(Tren(TIPS))}(2)(mu-As)] (4) in very low yield. Complex 4 is unstable which precluded full characterisation, but these photolytic and reductive reactions testify to the tendency of 2-arsaethynolate to fragment with CO release and As transfer. However, addition of 2 to an electride mixture of potassium-graphite and 2,2,2-cryptand gives [{U(Tren(TIPS))}(2){mu-eta(2)(OAs):eta(2)(CAs)-OCAs}][K(2,2,2-cryptand)] (5). The coordination mode of the trapped 2-arsaethynolate in 5 is unique, and derives from a new highly reduced and bent form of this ligand with the most acute O-C-As angle in any complex to date (O-C-As angle approximate to 128 degrees). The trapping rather than fragmentation of this highly reduced O-C-As unit is unprecedented, and quantum chemical calculations reveal that reduction confers donor-acceptor character to the O-C-As unit.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据