4.7 Article

Failure in the compensatory mechanism in red blood cells due to sustained smoking during pregnancy

期刊

CHEMICO-BIOLOGICAL INTERACTIONS
卷 313, 期 -, 页码 -

出版社

ELSEVIER IRELAND LTD
DOI: 10.1016/j.cbi.2019.108821

关键词

-

资金

  1. European Union
  2. Hungarian Government [GINOP -2.3.2-15-2016-00035]

向作者/读者索取更多资源

Decrease in the bioavailability of vasoactive nitric oxide (NO), derived from the endothelial nitric oxide synthase (NOS3), underlines vascular endothelial damage. Our expanding knowledge on mature red blood cells (RBCs) makes it supposable that RBCs might contribute to vascular function and integrity via their active NO synthesizing system (RBC-NOS3). This rescue mechanism of RBCs could be especially important during pregnancy with smoking habit, when smoking acts as an additional stressor and causes active change in the redox status. In this study RBC populations of 82 non-smoking (RBC-NS) and 75 smoking (RBC-S) pregnant women were examined. Morphological variants were followed by confocal microscopy and quantified by a microscopy based intelligent analysis software. Fluorescence activated cell sorting was used to examine the translational and posttranslational regulation of RBC-NOS, Arginase-1 and the formation of the major product of lipid peroxidation, 4-hydroxy-2-nonenal. To survey the rheological parameters of RBCs like elasticity and plasticity atomic force microscopy-based measurement was applied. Significant morphological and functional differences of RBCs were found between the non-smoking and smoking groups. The phenotypic variations in RBC-S population, even the characteristic biconcave disc-shaped cells, could be connected to impaired NOS3 activation and are compromised in their physiological properties. Membrane lipid studies reveal an elevated lipid oxidation state well paralleled with the changed elastic and plastic activities. These features can form a basic tool in the prenatal health screening conditions; hence the compensatory mechanism of RBC-S population completely fails to sense and rescue the acute oxidative stress conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据