4.7 Article

Structurally improved, urea-templated, K2CO3-based sorbent pellets for CO2 capture

期刊

CHEMICAL ENGINEERING JOURNAL
卷 374, 期 -, 页码 20-28

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2019.05.091

关键词

Pelletization; K2CO3-based sorbents; CO2 capture; Extrusion-spheronization; Pore-forming

资金

  1. National Science Foundation of China [51806108, 51806109, 51706108]
  2. Natural Science Foundation of Jiangsu Higher Education Institutions of China [18KJB470018, 18KJB470019]

向作者/读者索取更多资源

The development of K2CO3-based sorbents with desirable CO2 capture capacity and mechanical property is highly necessary for its large-scale application. In this work, a range of extruded-spheronized K2CO3-based pellets containing different K2CO3 loading (30-70 wt%) and Al2O3-based supports (i.e., activated alumina, Bayer aluminum hydroxide, kaolinite clay and calcium aluminate cement) were prepared for CO2 capture. It is found that the distinct textural properties of different supports result in the obvious diversities in CO2 uptake and mechanical property of K2CO3-based pellets. The activated alumina-supported sorbent pellets loaded with 50 wt % of K2CO3 possess the highest CO2 adsorption capacity of 2.29 mmol/g. It is mainly attributed to the moderate amounts of active component contributing to good textural properties and abundant CO2-philic sites, whereas excessive K2CO3 loading will cause the destruction of porous structure, consequently the inferior CO2 uptake. Moreover, the addition of 15 wt% of urea can furher enhace CO2 uptake of the activated alumina-supported sorbent pellets loaded with 50 wt% of K2CO3, similar to 3.10 mmol CO2/g. The improved CO2 uptake is due to the significantly enhanced porosity of sorbent pellets as a result of urea decomposition. In addition, the urea-templated sorbent pellets still maintain the high compressive strength (18.96 MPa) and good attrition resistance (a weight loss of 0.59% after 4000 rotations).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据