4.7 Article

Investigation of packed conductive foams as a novel reactor configuration for methane steam reforming

期刊

CHEMICAL ENGINEERING JOURNAL
卷 391, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2019.123494

关键词

Process intensification; Steam reforming; Heat transfer; Metallic foams; Packed foams

资金

  1. European Research Council under the European Union's Horizon 2020 research and innovation program [694910/INTENT]

向作者/读者索取更多资源

In this work, a novel fixed bed reactor configuration is proposed and tested for the steam reforming of methane; the proposed solution consists of filling the voids of highly conductive metallic open-cell foams with small catalytic pellets. This reactor layout aims at enhancing the radial heat transfer of the tubular reactor by exploiting the thermal conductivity of the solid interconnected matrix, while keeping a target catalyst inventory and avoiding issues related to washcoating of metallic structures. Tests were performed using a Rh/Al2O3 catalyst in the form of alumina egg-shell particles, with diameter of 600 mu m. FeCrAlY open cell foams of 12 PPI and copper open cell foams of 10 and 40 PPI were compared to a conventional packed bed system; experiments were performed at GHSV of 5000 and 10000 h(-1) at oven temperatures in the 600-800 degrees C range. Experiments demonstrated a benefit in terms of the thermal management of the reactor and an increase of productivity at the same furnace temperature in kinetically-limited conditions. A heat transfer model of the packed foams was developed based on the approach of electric equivalent circuit; the model incorporates independently estimated lumped or effective parameters and provides an engineering rationale of the observed reduction of temperature gradients across the catalytic bed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据