4.7 Article

Synthesis of shape and structure-dependent hydroxyapatite nanostructures as a superior adsorbent for removal of U(VI)

期刊

CHEMICAL ENGINEERING JOURNAL
卷 384, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2019.123262

关键词

Shape and structure-control; HAP; Uranium; Removal; Complexation

资金

  1. Natural Science Foundations of China [U1501231, 51708143, 51508116]
  2. Project of Guangdong Provincial Key Laboratory of Radioactive Contamination Control and Resources [2017B030314182]
  3. Science and Technology Program of Guangzhou, China [201804020072, 201804010366]
  4. Foundation of Department of Education of Guangdong Province of China [2018KTSCX176]

向作者/读者索取更多资源

Highly efficient removal of U(VI) from uranium-containing wastewaters is urgently needed with the global nuclear energy exploitation. Herein, we design a large-scale fabrication of shape and structure-dependent hydroxyapatite (HAP) nanostructures produced using a facile hydrothermal method in absence of any organic solvents and templates. It was found that the hydrothermal reaction temperature was a vital factor affecting the morphology (turned from nanosheets to nanoribbons and finally to nanoblocks) and structure (turned from monetize to hydroxyapatite and from calcium hydrogen phosphate hydrate to hydroxyapatite) of HAP. Moreover, the obtained HAP-180 exhibits highly efficient removal of U(VI) (99.3% removal of U(VI) within 30 s), and with the maximum adsorption capacity of 2024 mg/g, which is higher than those of HAP-120, HAP-150 and other materials previously reported. The superior removal performance is ascribed to the specific structure of HAP-180 and effective complexation with U(VI) ions. The findings of this work indicate that the morphology and structure of HAP can be feasible adjustment, and it is promising as environmental remediation material for U(VI) clean-up.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据