4.7 Article

Enhanced performance of LaFeO3 perovskite for peroxymonosulfate activation through strontium doping towards 2,4-D degradation

期刊

CHEMICAL ENGINEERING JOURNAL
卷 384, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2019.123377

关键词

Perovskite; Peroxymonosulfate activation; Sulfate radical; 2,4-D

资金

  1. [2017ZX07301-003]

向作者/读者索取更多资源

ABO(3)-type perovskite oxides with diverse active metal sites and stable texture structures have attracted much attention in heterogeneous catalysis, including catalysis of peroxymonosulfate (PMS) for wastewater treatment. Here, Sr was introduced into the A-site of LaFeO3 (LFO) perovskite to modify its structure for enhancing the catalytic performance. Specifically, La0.5Sr0.5FeO3 (LSF50) with a lower valence state of Fe and abundant oxygen vacancies exhibited excellent catalytic activity for PMS activation to degrade 2,4-dichlorophenoxyacetic acid (2,4-D), 5.7 times higher than the catalytic activity of LFO. In the presence of 0.6 g/L LSF50 and 1 mM PMS, 2,4-D (10 mg/L) could be completely removed within 60 min. Magnetic LSF50 showed a low level of metal leaching and good reusability for 2,4-D degradation. Moreover, the excellent degradation efficiency was maintained in a large range of initial pH from 5 to 11 as well as in a real water matrix such as surface water. Various reactive oxygen species (ROS) involving sulfate radical (SO4 center dot-), hydroxyl radical (HO center dot), and singlet oxygen (O-1(2)) were generated during the catalysis. Based on electron spin resonance (ESR) studies and radical quenching experiments, SO4 center dot- played a dominant role in 2,4-D degradation. A coupled PMS activation mechanism for the major free radicals and minor O-1(2) was proposed for the rapid degradation of 2,4-D in LSF50/PMS system. The transformation byproducts were identified and the possible degradation pathways were proposed. This study provides a new insight for the development of efficient A-sites-modified perovskite oxide for PMS activation in environmental remediation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据