4.7 Article

Enhanced thermal performance of lithium nitrate phase change material by porous copper oxide nanowires integrated on folded meshes for high temperature heat storage

期刊

CHEMICAL ENGINEERING JOURNAL
卷 391, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2019.123613

关键词

Phase change material; Thermal conductivity; Composite; Lithium nitrate; Copper oxide nanowire; Heat storage

资金

  1. Railroad Technology Research Program - Ministry of Land, Infrastructure and Transport of Korean government [17RTRP-C137546-01]

向作者/读者索取更多资源

Lithium nitrate has been highlighted as a high temperature phase change material with the melting temperature of similar to 256 degrees C for the applications of thermal energy storage. However, low thermal conductivity and corrosive property of lithium nitrate needs to be improved for wide applications. This report experimentally investigates thermal properties of a phase change composite consisting of lithium nitrate and porous copper oxide nanowires integrated on folded meshes. Specifically, porous copper oxide nanowires vertically aligned on the folded copper meshes with desired shapes are synthesized by carrying out chemical solution growth and subsequent heat treatment. Then, lithium nitrate is infiltrated in the network of the thermal conductive fillers under vacuum conditions. Our platform can provide a flexible geometrical configuration to enhance thermal performance by modifying the folded geometries to the target objects. As a result, the fabricated phase change composites with 7 vol% of filling materials exhibit the 6.7 times higher thermal conductivities than pure lithium nitrate, showing the excellent thermal transport by the fillers in the composite. Moreover, the porous copper oxide nanowires exhibit excellent anti-corrosive properties to lithium nitrate for stable operation under repeated phase change processes. Finally, the phase change composite heat storages exhibit the 1.3 times faster thermal charging and discharging characteristics than pure lithium nitrate ones.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据