4.7 Article

Fabrication of NiFe layered double hydroxide/reduced graphene oxide (NiFe-LDH/rGO) nanocomposite with enhanced sonophotocatalytic activity for the degradation of moxifloxacin

期刊

CHEMICAL ENGINEERING JOURNAL
卷 375, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2019.122102

关键词

Emerging pollutants; Moxifloxacin; NiFe-LDH/rGO; Sonophotocatalytic process; Advanced oxidation processes

资金

  1. University of Tabriz
  2. Gebze Technical University
  3. Near East University

向作者/读者索取更多资源

Herein a NiFe layered double hydroxide/reduced graphene oxide (NiFe-LDH/rGO) nanocomposite was synthesized in a hydrothermal method. The sonophotocatalytic implementation of NiFe-LDH/rGO nanocomposite was scrutinized for the degradation of moxifloxacin (MOX), as a model-emerging contaminant, from the solution. The structure of the synthesized samples was analyzed by XRD, FE-SEM, EDX, TEM, FTIR, BET, PL, and UV-Vis DRS analyses. To manifest the sonophotocatalytic performance of NiFe-LDH/rGO nanocomposite, the impact of the main operating parameters was examined for the degradation of MOX. The best sonophotocatalytic efficiency of 90.40% was achieved by using 1.0 g/L catalyst, 20 mg/L MOX, and an ultrasonic power of 150 W at a pH of 8 (natural) within 60 min. Moreover, the effects of the addition of various oxidants, dissolved gases, and various scavengers on the decomposition of MOX were investigated. A proposed mechanism was also presented for the decomposition of MOX in the presence of NiFe-LDH/rGO nanocomposite under the sonophotocatalytic system. By-products formed through sonophotocatalytic degradation process were recognized by the gas chromatography-mass spectrometry (GC-MS) technique. Finally, the reusability test of NiFe-LDH/rGO nanocomposite in the MOX degradation revealed that a drop of almost 13% occurred after five successive cycles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据