4.7 Article

Electrically conductive and fluorine free superhydrophobic strain sensors based on SiO2/graphene-decorated electrospun nanofibers for human motion monitoring

期刊

CHEMICAL ENGINEERING JOURNAL
卷 373, 期 -, 页码 298-306

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2019.05.045

关键词

Superhydrophobic; Electrically conductive; Nanofiber composite; SiO2 nanoparticles; Strain sensor

资金

  1. Natural Science Foundation of China [51873178, 51503179, 21673203]
  2. Opening Project of State Key Laboratory of Polymer Materials Engineering (Sichuan University) [sklpme2018-4-31]
  3. Qing Lan Project of Jiangsu province
  4. China Postdoctoral Science Foundation [2016 M600446]
  5. Jiangsu Province Postdoctoral Science Foundation [1601024A]
  6. Priority Academic Program Development of Jiangsu Higher Education Institutions

向作者/读者索取更多资源

It is desirable and still challenging to develop flexible, breathable and anti-corrosive wearable strain sensors with high stretchability and sensitivity that can realize full range body motions. Here, a superhydrophobic and conductive nanofiber composites (SCNCs) with a hierarchical SiO2/graphene shell and polyurethane (PU) nanofiber core microstructure were fabricated by assembling graphene on PU nanofibers under the assistance of ultrasonication, followed by stretching-induced SiO2 nanoparticles decoration onto the graphene shell. The introduction of graphene and SiO2 nanoparticles improves both Young's modulus, tensile strength and the elongation at break of PU nanofibrous membrane. The superhydrophobicity and conductivity can be almost maintained after the SCNCs are subject to cyclic stretching or abrasion or even exposed to harsh conditions. When used as strain sensors, the SCNCs show high stretchability, reliability and good durability and can be used in harsh environment including acid and salt conditions. The SCNCs are then assembled to monitor full range body motions including both subtle and large body movements, making it a promising candidate in wearable electronics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据