4.7 Article

One-pot synthesis of Ag-H3PW12O40-LiCoO2 composites for thermal oxidation of airborne benzene

期刊

CHEMICAL ENGINEERING JOURNAL
卷 375, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2019.121956

关键词

Catalytic oxidation; VOCs; Benzene; Lithium cobalt oxides; Structural modifications

资金

  1. National Natural Science Foundation of China [21806016, 21876022]
  2. Fundamental Research Funds for the Central Universities [DUT18RC(3)006]
  3. PetroChina Innovation Foundation [2017D-5007-0609]

向作者/读者索取更多资源

The lithium cobalt oxide (LiCoO2), one of the complex metal oxides that compose the spent Li-ion battery cathodes, was studied for controlling air pollution. The LiCoO2 was modified with AgNO3 and phosphotungstic acid (HPW) via a facile one-pot synthesis to obtain the AgHPWLiCo catalyst, which was comparatively studied with HPWLiCo, AgLiCo and LiCoO2 catalysts by XRD, ATR, H-2 pulse chemisorption, SEM, TEM, XPS, EPR, C6H6-TPD, H-2-TPR and O-2-TPD. The Ag dispersion of the AgHPWLiCo sample was almost ten times that of the AgLiCo catalyst and the addition of Ag could alleviate particle agglomeration. The Ag+ species, the dominant form of Ag, played an imperative role in increasing the benzene adsorption capacity, and both Ag and HPW additions strengthened the interaction of benzene with catalyst surface. Compared with the pristine LiCoO2, the Ag+ species enhanced the reducibility of surface adsorbed oxygen and lattice oxygen, and the HPW addition increased the mobility of lattice oxygen. Due to the synergy between Ag and HPW, the AgHPWLiCo catalyst exhibited a high activity for benzene oxidation: under the reaction conditions of 120 L.g(-1).h(-1) of space velocity, 450-480 ppm of benzene and 300 degrees C, similar to 95% of benzene conversion was achieved over the AgHPWLiCo catalyst whereas only similar to 62%, similar to 45% and similar to 11% of benzene could be removed respectively over the HPWLiCo, AgLiCo and LiCoO2 catalysts. Adding HPW could suppress the build-up of oxidation products on catalyst surface, which might also contribute to the excellent benzene oxidation performance of the AgHPWLiCo catalyst. Besides, the effects of water vapor and SO2 on catalyst activity were investigated.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据