4.7 Article

Thermal responses of concrete slabs containing microencapsulated low-transition temperature phase change materials exposed to realistic climate conditions

期刊

CEMENT & CONCRETE COMPOSITES
卷 104, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.cemconcomp.2019.103391

关键词

Microencapsulated phase change materials; Concrete slab; Thermal response; Freeze-thaw deterioration; Service life prediction; Mechanical properties

资金

  1. National Research Foundation of Korea (NRF) - Ministry of Education [NRF-2018R1D1A1B07048681]
  2. National Research Foundation of Korea (NRF) - Ministry of Science ICT [NRF-2015R1C1A1A01052102, NRF-2017R1A2B4005625]

向作者/读者索取更多资源

This study examines the effect of microencapsulated low-transition temperature phase change material (PCM) additions on the thermal response of concrete slabs subjected to long-term realistic environmental exposure. To prevent direct contact of PCM with cement hydration products and possible leakage upon liquefaction, an inert PCM was encapsulated with a melamine-formaldehyde resin via an emulsification process before being added in concrete mixtures. Temperature monitoring was performed on three 500 x 500 x 150 mm large-scale concrete slabs with and without PCM for about 14 months encompassing two cold winter seasons. Results indicated that the addition of microencapsulated PCM effectively reduced excessive temperature drop and the number of freeze-thaw cycles concrete slabs experience during winter seasons, which may lead to service life extension by up to 5.2%-35.9% based on a freeze-thaw deterioration model. In particular, the effectiveness of PCM was found to be pronounced when the ambient temperature varied around the transition temperature (mild-cold seasons) while it became insignificant under prolonged exposure to extreme climate conditions such as cold winter and summer. The result of a visual condition survey was consistent with that of the model predictions, which verified the potential benefits of low-transition temperature PCM technology in concrete applications. This study also investigated the influence of microencapsulated PCM pellet embedment on the compressive and flexural strength characteristics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据