4.7 Article

Direct and complete utilization of agricultural straw to fabricate all-biomass films with high-strength, high-haze and UV-shielding properties

期刊

CARBOHYDRATE POLYMERS
卷 223, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.carbpol.2019.115057

关键词

Straw; Agricultural wastes; All-biomass material; Entanglement network; Multifunctional materials

资金

  1. National Key Research and Development Program of China [2017YFA0403103]
  2. Beijing Municipal Science & Technology Commission [Z181100004218004]
  3. Key Programs of the Chinese Academy of Sciences [ZDRW-CN-2018-2]
  4. National Natural Science Foundation of China [51425307]
  5. Youth Innovation Promotion Association CAS [2018040]

向作者/读者索取更多资源

It is of vital significance to fabricate high-value-added materials from agricultural wastes by environmentally friendly and cost-effective processes. In this work, we propose an approach to directly and completely convert agricultural straw into multifunctional all-biomass films by introducing an entanglement network of additional cellulose to enhance the strength of the regenerated straw. First, natural wheat straw is dissolved in the ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl). Then, a small amount of cellulose with a high degree of polymerization (DP) is introduced to obtain straw/cellulose/AmimCl solutions, which are subsequently soaked in water for biomass regeneration, washed and dried to obtain straw/cellulose films. Dynamic shear rheological test confirms that after adding high-DP cellulose, an enhanced entanglement network forms in the solutions, which is essential to the processing and mechanical properties of materials. Extensional rheological test indicates that straw/cellulose/AmimCl solutions exhibit excellent spinnability and film-forming properties based on a significant increase in the capillary break-up time. Therefore, after regeneration in water, straw-based all-biomass films with high mechanical strength are obtained. When the content of additional wood pulp (WP, DP = 1300) with respect to total solids is 25 wt%, the obtained straw/WP all-biomass film reaches a tensile strength of 62 MPa. More interestingly, because there is no intentional chemical pretreatment and compositional isolation involved in this process, almost all of the components in straw, such as cellulose, lignin, hemicellulose and inorganic compounds, are retained in the final films. Thus, the resultant films have a superhigh haze of 97% while preventing 97% UVA (320-400 nm) and almost 100% UVB (280-320 nm). In sum, we demonstrate the complete and value-added utilization of low-grade bioresources by a facile, green and economical process to fabricate high-strength, high-haze and UV-shielding all-biomass films, which have great potential in low-cost, biodegradable and environmentally friendly packaging.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据