4.8 Article

YAP1 Mediates Resistance to MEK1/2 Inhibition in Neuroblastomas with Hyperactivated RAS Signaling

期刊

CANCER RESEARCH
卷 79, 期 24, 页码 6204-6214

出版社

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/0008-5472.CAN-19-1415

关键词

-

类别

资金

  1. NIH [R35 CA220500, P01CA217959, 1F31CA220844-01A1, T32GM008076]
  2. Cookies for Kids Cancer
  3. Press On Foundation
  4. Giulio D'Angio Endowed Chair
  5. Alex's Lemonade Stand Foundation Young Investigator Award

向作者/读者索取更多资源

Relapsed neuroblastomas are enriched with activating mutations of the RAS-MAPK signaling pathway. The MEK1/2 inhibitor trametinib delays tumor growth but does not sustain regression in neuroblastoma preclinical models. Recent studies have implicated the Hippo pathway transcriptional coactivator protein YAP1 as an additional driver of relapsed neuroblastomas, as well as a mediator of trametinib resistance in other cancers. Here, we used a highly annotated set of high-risk neuroblastoma cellular models to modulate YAP1 expression and RAS pathway activation to test whether increased YAP1 transcriptional activity is a mechanism of MEK1/2 inhibition resistance in RAS-driven neuroblastomas. In NLF (biallelic NF1 inactivation) and SK-N-AS (NRAS Q61K) cell lines, trametinib caused a near-complete translocation of YAP1 protein into the nucleus. YAP1 depletion sensitized neuroblastoma cells to trametinib, while overexpression of constitutively active YAP1 protein induced trametinib resistance. Mechanistically, significant enhancement of G(1)-S cell-cycle arrest, mediated by depletion of MYC/MYCN and E2F transcriptional output, sensitized RAS-driven neuroblastomas to trametinib following YAP1 deletion. These findings underscore the importance of YAP activity in response to trametinib in RAS-driven neuroblastomas, as well as the potential for targeting YAP in a trametinib combination. Significance: High-risk neuroblastomas with hyperactivated RAS signaling escape the selective pressure of MEK inhibition via YAP1-mediated transcriptional reprogramming and may be sensitive to combination therapies targeting both YAP1 and MEK.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据