4.6 Article

Vitamin D sterols increase FGF23 expression by stimulating osteoblast and osteocyte maturation in CKD bone

期刊

BONE
卷 127, 期 -, 页码 626-634

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.bone.2019.07.026

关键词

Osteoblasts; Osteocytes; Vitamin D; Chronic kidney disease

资金

  1. National Institutes of Health [R21-AR073977, DK-67563, DK-35423, DK-080984]
  2. National Institutes of Health [CTSI grant] [UL1 TR-000124]
  3. UCLA Children's Discovery and Innovation Institute

向作者/读者索取更多资源

Impaired osteoblast and osteocyte maturation contribute to mineralization defects and excess FGF23 expression in CKD bone. Vitamin D sterols decrease osteoid accumulation and increase FGF23 expression; these agents also increase osteoblast maturation in vitro but a link between changes in bone cell maturation, bone mineralization, and FGF23 expression in response to vitamin D sterols has not been established. We evaluated unmineralized osteoid accumulation, osteocyte maturity markers (FGF23: early osteocytes; sclerostin: late osteocytes), and osteocyte apoptosis in iliac crest of 11 pediatric dialysis patients before and after 8 months of doxercalciferol therapy. We then evaluated the effect of 1,25(OH)(2)vitamin D on in vitro maturation and mineralization of primary osteoblasts from dialysis patients. Unmineralized osteoid accumulation decreased while numbers of early (FGF23-expressing) increased in response to doxercalciferol. Osteocyte apoptosis was low but increased with doxercalciferol. Bone FGF23 expression correlated with numbers of early, FGF23-expressing, osteocytes (r = 0.83, p < 0.001). In vitro, 1,25(OH)(2)vitamin D increased expression of the mature osteoblast marker osteocalcin (BGLAP) but only very high (100 nM) concentrations affected in vitro osteoblast mineralization. High doses (10 and 100 nM) of 1,25(OH)(2)vitamin D also increased the ratio of RANKL/OPG expression in CKD osteoblasts. Vitamin D sterols directly stimulate osteoblast maturation. They also increase osteocyte turnover and increase osteoblast expression of osteoclast differentiation factors, thus likely modulating osteoblast/osteoclast/osteocyte coupling. By increasing numbers of early osteocytes, vitamin D sterols increase FGF23 expression in CKD bone.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据