4.2 Article

Coix lacryma-jobi var. ma-yuen Stapf sprout extract induces cell cycle arrest and apoptosis in human cervical carcinoma cells

期刊

出版社

BMC
DOI: 10.1186/s12906-019-2725-z

关键词

Apoptosis; Cell cycle arrest; Cervical cancer; Coix lacryma-jobi sprout extract

资金

  1. Gachon University Gil Medical Center [FRD201710-02]
  2. Korea Research Foundation [2018R1D1A1B07048747]
  3. Rural Development Administration [PJ0127852017]
  4. National Research Foundation of Korea [2018R1D1A1B07048747] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

Background Cervical cancer is the second-leading cause of cancer-related mortality in females. Coix lacryma-jobi L. var. ma-yuen (Rom.Caill.) Stapf ex Hook. f. is the most widely recognized medicinal herb for its remedial effects against inflammation, endocrine system dysfunctions, warts, chapped skin, rheumatism, and neuralgia and is also a nourishing food. Methods To investigate the activity of Coix lacryma-jobi sprout extract (CLSE) on cell proliferation in human cervical cancer HeLa cells, we conducted a Cell Counting Kit-8 (CCK-8) assay. Flow-cytometric analysis and western blot analysis were performed to verify the effect of CLSE on the regulation of the cell cycle and apoptosis in HeLa cells. Results We observed that CLSE significantly inhibited cell proliferation. Furthermore, CLSE dose-dependently promoted cell cycle arrest at the sub-G1/ S phase in HeLa cells, as detected by bromodeoxyuridine (BrdU) staining. The cell-cycle-arrest effects of CLSE in HeLa cells were associated with downregulation of cyclin D1 and cyclin-dependent kinases (CDKs) 2, 4, and 6. Moreover, CLSE induced apoptosis, as determined by flow-cytometric analysis and nuclear DNA fragmentation with Annexin V/propidium iodide (PI) and 4 ' 6 '-diamidino-2-phenylindole (DAPI) staining. Induction of apoptosis by CLSE was involved in inhibition of the antiapoptotic protein B-cell lymphoma 2 (Bcl-2) and upregulation of the apoptotic proteins p53, cleaved poly (ADP-ribose) polymerase (PARP), cleaved caspase-3, and cleaved caspase-8. Finally, we observed that CLSE inactivated the phosphoinositide 3-kinase (PI3K) and protein kinase B (AKT) pathways. Conclusions CLSE causes cell cycle arrest and apoptotic cell death through inactivation of the PI3K/AKT pathway in HeLa cells, suggesting it is a viable therapeutic agent for cervical cancer owing to its anticancer effects.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据