4.8 Article

An ultrasensitive biosensor for colorimetric detection of Salmonella in large-volume sample using magnetic grid separation and platinum loaded zeolitic imidazolate Framework-8 nanocatalysts

期刊

BIOSENSORS & BIOELECTRONICS
卷 150, 期 -, 页码 -

出版社

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2019.111862

关键词

Calorimetric biosensor; Magnetic particle chain; Magnetic grid separation; Large-volume sample; Pt@ZIF-8

资金

  1. National Natural Science Foundation of China [31802219]
  2. Walmart Foundation [SA17031161]
  3. Walmart Food Safety Collaboration Center

向作者/读者索取更多资源

Salmonella is the leading risk factor in food safety. Rapid, sensitive and accurate detection of Salmonella is a key to prevent and control the outbreaks of foodborne diseases caused by Salmonella. In this study, we reported a colorimetric biosensor for ultrasensitive detection of Salmonella Typhimurium using a magnetic grid separation column to efficiently separate target bacteria from large volume of sample and platinum loaded zeolitic imidazolate framework-8 (Pt@ZIF-8) nanocatalysts to effectively amplify biological signal. The target Salmonella cells in large volume of sample were first separated and concentrated using the magnetic grid separation column with immune magnetic particle chains, then conjugated with the immune Pt@ZIF-8 nanocatalysts to mimic peroxidase for catalysis of hydrogen peroxide-3,3',5,5'-tetramethylbenzidine, and finally determined by measuring the catalysate at characteristic wavelength of 450 nm. This proposed biosensor was able to separate similar to 70% of target Salmonella cells from 50 mL of bacterial sample and quantitatively detect Salmonella from 10(1) to 10(4) CFU/mL in 2.5 h with the lower detection limit of 11 CFU/mL. The mean recovery for Salmonella in spiked chicken carcass was about 109.8%. This new magnetic grid separation method was first time reported for efficient separation of target bacteria from very large volume of sample to greatly improve the sensitivity of this biosensor and could be used with various biosensing assays for practical applications in routine detection of foodborne pathogens without any bacterial pre-enrichment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据