4.8 Article

Ultrasensitive and visible light-responsive photoelectrochemical aptasensor for edifenphos based on Zinc phthalocyanine sensitized MoS2 nanosheets

期刊

BIOSENSORS & BIOELECTRONICS
卷 150, 期 -, 页码 -

出版社

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2019.111867

关键词

Edifenphos; Molybdenum disulfide; Visible light; Photoelectric aptasensor

资金

  1. National Natural Science Foundation of China [21375050, 21675066]
  2. Foundation of Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, Qingdao University of Science and Technology [SATM201807]

向作者/读者索取更多资源

Developing a simple, rapid detection method for the analysis of edifenphos (EDI) is crucial due to its residue is harmful to acetylcholinesterase on the human cellular system, and cause a lot of complications. Herein, we synthesized visible light-responsive MoS2 nanosheets decorated with Zinc phthalocyanine (ZnPc) nanoparticles (ZnPc/n-MoS2). Due to the sensitization of ZnPc nanoparticles, the resulting ZnPc/n-MoS2 exhibited narrower energy bandgap and efficient charge transfer. Especially, the carrier lifetime of ZnPc/n-MoS2 is 2 more times longer than n-MoS2, and the photocurrent intensity of ZnPc/n-MoS2 is 24 times of n-MoS2 and 22 times of ZnPc nanoparticles under visible light irradiation. Further, a visible light-responsive ultrasensitive photoelectrochemical (PEC) aptasensor for selectivity recognition of EDI was triumphantly established by using EDI aptamer as a biorecognition element, which exhibited a wide linear ranking from 5 ng L-1 to 10 mu g L-1 (R-2 = 0.996) and a low detection limit of 1.667 ng L-1 (S/N = 3). The splendid performance of the ZnPc/n-MoS2 nanosheet ultrasensitive sensing platform can be applied to detect the concentration of EDI in food, biomedical and environmental analysis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据