4.8 Article

ATMP-induced three-dimensional conductive polymer hydrogel scaffold for a novel enhanced solid-state electrochemiluminescence biosensor

期刊

BIOSENSORS & BIOELECTRONICS
卷 143, 期 -, 页码 -

出版社

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2019.111601

关键词

Amino trimethylene phosphonic acid (ATMP); Conductive hydrogel; Luminol derivative; Electrochemiluminescent (ECL); Xanthine biosensor

资金

  1. National Natural Science Foundation of China [21675086]
  2. Fundamental Research Funds for the Central Universities [30918012202]
  3. Overseas Academic Partnership Program of Nanjing University of Technology

向作者/读者索取更多资源

Reliable and sensitive detection of xanthine has important medical and biological significance. In this work, a novel three-dimensional (3D) conductive polymer hydrogel of polyaniline (PAni) was feasibly prepared using aniline (Ani), amino trimethylene phosphonic acid (ATMP) and ammonium persulfate ((NH4)(2)S2O8) as monomer, gelatinizing agent and oxidizing agent, respectively. Protonation of aniline can be achieved by ATMP, inducing good conductivity of the obtained hydrogel. ATMP remained the chelating abilities in the conductive hydrogel, enabling further immobilization with silver nanoparticles (AgNPs) functionalized by a luminol derivative, N-(aminobutyl)-N-(ethylisoluminol) (ABEI). ABEI-Ag@PAni-ATMP exhibited an enhanced performance of solid-state electrochemiluminescence (ECL). Integrated with xanthine oxidase (XOD), the proposed biosensor can be applied in the detection of xanthine via in-situ generated hydrogen peroxide (H2O2), and present a low detection limit of 9.6 nM, a wide linear range (from 0.01 to 200 mu M) and excellent stability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据