4.7 Article

Anticancer effects of sodium and potassium quercetin-5′-sulfonates through inhibition of proliferation, induction of apoptosis, and cell cycle arrest in the HT-29 human adenocarcinoma cell line

期刊

BIOORGANIC CHEMISTRY
卷 94, 期 -, 页码 -

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.bioorg.2019.103426

关键词

Quercetin chelates; Sodium/potassium quercetin-5 '-sulfonates; Colon cancer; Cell cycle; Apoptosis

资金

  1. Maria Curie-Sklodowska University

向作者/读者索取更多资源

In the present study, we compared the anticancer potential of quercetin (3,3',4',5,7-pentahydroxyflavone, I) and its sulfonic derivatives sodium/potassium quercetin-5'-sulfonates (described as II and III) against several human carcinoma cell lines. Quercetin (I) was used as a starting compound for synthesis of II and III. In this work, a modified and more efficient method of synthesizing derivatives II and III has been described. The molecular structures of the compounds were characterized in a solution and in the solid state using H-1 NMR, C-13 NMR, 2D NMR, and XPS spectroscopy, respectively. The stoichiometry of these complexes was determined by elemental analysis as well as thermogravimetric and X-ray fluorescence methods. The spectral data allowed complete characterization of the investigated compounds in the solution and in the solid state and unambiguous determination of the place of substitution of the sulfonic group in the phenyl ring in the C-5' position. Our in vitro studies revealed that II and III prominently reduced the viability of the HT-29 colon cancer cell line. Additionally, we observed that sulfonic derivatives decreased proliferation of colon (HT-29, LS180), lung (A549), and breast (T47D) cancer cell lines. Moreover, we detected a lower cytotoxic effect of II and III on several normal cell lines (colon epithelial CCD 841 CoTr, mouse subcutaneous connective tissue L-929, and human skin fibroblasts HSF cell lines) than that exerted by pure quercetin. The anticancer properties were especially evident in the HT-29 colon cancer cell line, where cell cycle inhibition in the G(2)-M phase and prominent apoptosis induced by II and III were observed. In conclusion, the sodium/potassium quercetin-5'-sulfonates prepared from quercetin showed promising anti-proliferative and pro-apoptotic activity against colon cancer cells. Therefore, we support the opinion that sodium/potassium quercetin-5'-sulfonates should be considered as promising organometallic compounds for possible clinical applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据