4.5 Article

A computational model of a network of initial lymphatics and pre-collectors with permeable interstitium

期刊

BIOMECHANICS AND MODELING IN MECHANOBIOLOGY
卷 19, 期 2, 页码 661-676

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s10237-019-01238-x

关键词

Lymph flow; Fluid-structure interaction; Numerical model; Extrinsic pumping

资金

  1. NIH [U01-HL-123420]

向作者/读者索取更多资源

Initial lymphatic vessels are made up of overlapped endothelial cells that act as unidirectional valves enabling one-way drainage of tissue fluid into the lumen of the initial lymphatics when there is a favourable pressure gradient. Initial lymphatics subsequently drain this fluid into the collecting lymphatics. This paper describes a computational model for a network of passive rat mesenteric lymphatic vessels with sparse secondary valves. The network was simulated with the secondary valves both operational and non-operational. The effects on the cycle-mean outflow-rate from the network of both inflammation and the resistance of the surrounding interstitium were considered. The cycle-mean outflow-rate is sensitive to vessel stiffness. If the influence of primary-valve resistance is reduced relative to that of interstitial resistance and intravascular resistance, there is no absolute advantage of extrinsic pumping, since maximum outflow-rate occurs when vessels are rigid. However, there is relative advantage, in that the outflow-rate at intermediate stiffness is higher with the secondary valves functioning than when they are deactivated. If primary-valve resistance dominates, then extrinsic pumping of non-rigid vessels provides absolute advantage. The nonlinear relation between pressure drop and flow-rate of the endothelial primary valves, combined with downstream compliance and pulsatile external pressure, constitutes a separate mechanism of pumping. By enabling the consideration of interactions between multiple phenomena (primary valves, secondary valves, a real network geometry with multiple branches, deformable vessel walls, interstitial resistance and external pressures), the model offers a perspective for delineating physiological phenomena that have not yet been fully linked to the biomechanics of fluid flow through initial lymphatic networks.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据