4.7 Article

Cell Type-Specific Methylome-wide Association Studies Implicate Neurotrophin and Innate Immune Signaling in Major Depressive Disorder

期刊

BIOLOGICAL PSYCHIATRY
卷 87, 期 5, 页码 431-442

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.biopsych.2019.10.014

关键词

Depression; Epigenetics; Immune deconvolution; Methylation; Nerve growth factor

资金

  1. National Institute of Mental Health [R01MH099110]
  2. Florey Institute of Neuroscience and Mental Health
  3. Alfred and Victorian Forensic Institute of Medicine
  4. Australia's National Health and Medical Research Council
  5. Parkinson's Victoria
  6. Stanley Medical Research Institute
  7. Netherlands Brain Bank, Netherlands Institute of Neuroscience, Amsterdam
  8. Harvard Brain Tissue Resource Center
  9. Douglas-Bell Canada Brain Bank, Douglas Institute Research Center, Canada
  10. Geestkracht program of the Netherlands Organisation for Health Research and Development (ZonMw) [10-000-1002]
  11. VU University Medical Center
  12. GGZ inGeest
  13. Leiden University Medical Center
  14. Leiden University
  15. GGZ Rivierduinen
  16. University Medical Center Groningen
  17. University of Groningen
  18. Lentis
  19. GGZ Friesland
  20. GGZ Drenthe
  21. Rob Giel Onderzoekcentrum

向作者/读者索取更多资源

BACKGROUND: We sought to characterize methylation changes in brain and blood associated with major depressive disorder (MDD). As analyses of bulk tissue may obscure association signals and hamper the biological interpretation of findings, these changes were studied on a cell type-specific level. METHODS: In 3 collections of human postmortem brain (n = 206) and 1 collection of blood samples (N = 1132) of MDD cases and controls, we used epigenomic deconvolution to perform cell type-specific methylome-wide association studies within subpopulations of neurons/glia for the brain data and granulocytes/T cells/B cells/monocytes for the blood data. Sorted neurons/glia from a fourth postmortem brain collection (n = 58) were used for validation purposes. RESULTS: Cell type-specific methylome-wide association studies identified multiple findings in neurons/glia that were detected across brain collections and were reproducible in physically sorted nuclei. Cell type-specific analyses in blood samples identified methylome-wide significant associations in T cells, monocytes, and whole blood that replicated findings from a past methylation study of MDD. Pathway analyses implicated p75 neurotrophin receptor/nerve growth factor signaling and innate immune toll-like receptor signaling in MDD. Top results in neurons, glia, bulk brain, T cells, monocytes, and whole blood were enriched for genes supported by genome-wide association studies for MDD and other psychiatric disorders. CONCLUSIONS: We both replicated and identified novel MDD-methylation associations in human brain and blood samples at a cell type-specific level. Our results provide mechanistic insights into how the immune system may interact with the brain to affect MDD susceptibility. Importantly, our findings involved associations with MDD in human samples that implicated many closely related biological pathways. These disease-linked sites and pathways represent promising new therapeutic targets for MDD.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据