4.7 Article

Thermodynamically consistent estimation of Gibbs free energy from data: data reconciliation approach

期刊

BIOINFORMATICS
卷 36, 期 4, 页码 1219-1225

出版社

OXFORD UNIV PRESS
DOI: 10.1093/bioinformatics/btz741

关键词

-

资金

  1. Department of Science and Technology, India through the INSPIRE Faculty Fellowship [IFA 12-ENG-34]

向作者/读者索取更多资源

Motivation: Thermodynamic analysis of biological reaction networks requires the availability of accurate and consistent values of Gibbs free energies of reaction and formation. These Gibbs energies can be measured directly via the careful design of experiments or can be computed from the curated Gibbs free energy databases. However, the computed Gibbs free energies of reactions and formations do not satisfy the thermodynamic constraints due to the compounding effect of measurement errors in the experimental data. The propagation of these errors can lead to a false prediction of pathway feasibility and uncertainty in the estimation of thermodynamic parameters. Results: This work proposes a data reconciliation framework for thermodynamically consistent estimation of Gibbs free energies of reaction, formation and group contributions from experimental data. In this framework, we formulate constrained optimization problems that reduce measurement errors and their effects on the estimation of Gibbs energies such that the thermodynamic constraints are satisfied. When a subset of Gibbs free energies of formations is unavailable, it is shown that the accuracy of their resulting estimates is better than that of existing empirical prediction methods. Moreover, we also show that the estimation of group contributions can be improved using this approach. Further, we provide guidelines based on this approach for performing systematic experiments to estimate unknown Gibbs formation energies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据