4.6 Article

Unified concepts for understanding and modelling turnover of dissolved organic matter from freshwaters to the ocean: the UniDOM model

期刊

BIOGEOCHEMISTRY
卷 146, 期 2, 页码 105-123

出版社

SPRINGER
DOI: 10.1007/s10533-019-00621-1

关键词

Terrigenous dissolved organic matter; Land ocean aquatic continuum (LOAC); Biogeochemical model; Biogeochemistry; Photooxidation

资金

  1. Natural Environment Research Council, UK, as part of the Land Ocean Carbon Transfer (LOCATE) project [NE/N018087/1]
  2. U.S. NSF [OCE-1436748]
  3. NERC [NE/J011967/1]
  4. MWK-BIME [ZN 3184]
  5. NERC [NE/R012814/1, pml010010, bgs05007, NE/J011967/1, NE/N018087/1] Funding Source: UKRI

向作者/读者索取更多资源

The transport of dissolved organic matter (DOM) across the land-ocean-aquatic-continuum (LOAC), from freshwater to the ocean, is an important yet poorly understood component of the global carbon budget. Exploring and quantifying this flux is a significant challenge given the complexities of DOM cycling across these contrasting environments. We developed a new model, UniDOM, that unifies concepts, state variables and parameterisations of DOM turnover across the LOAC. Terrigenous DOM is divided into two pools, T-1 (strongly-UV-absorbing) and T-2 (non- or weakly-UV-absorbing), that exhibit contrasting responses to microbial consumption, photooxidation and flocculation. Data are presented to show that these pools are amenable to routine measurement based on specific UV absorbance (SUVA). In addition, an autochtonous DOM pool is defined to account for aquatic DOM production. A novel aspect of UniDOM is that rates of photooxidation and microbial turnover are parameterised as an inverse function of DOM age. Model results, which indicate that similar to 5% of the DOM originating in streams may penetrate into the open ocean, are sensitive to this parameterisation, as well as rates assigned to turnover of freshly-produced DOM. The predicted contribution of flocculation to DOM turnover is remarkably low, although a mechanistic representation of this process in UniDOM was considered unachievable because of the complexities involved. Our work highlights the need for ongoing research into the mechanistic understanding and rates of photooxidation, microbial consumption and flocculation of DOM across the different environments of the LOAC, along with the development of models based on unified concepts and parameterisations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据