4.5 Article

Curcumin induces secretion of glucagon-like peptide-1 through an oxidation-dependent mechanism

期刊

BIOCHIMIE
卷 165, 期 -, 页码 250-257

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.biochi.2019.08.013

关键词

Turmeric; Polyphenol; Antiglycemic; L cell; Oxidative transformation

资金

  1. National Institutes of Health [R01AT006896]
  2. Fulbright Scholarship [E056609]
  3. American Heart Association [16POST30690001]

向作者/读者索取更多资源

Curcumin shows antiglycemic effects in animals. Curcumin is chemically unstable at physiological pH, and its oxidative degradation products were shown to contribute to its anti-inflammatory effects. Since the degradation products may also contribute to other effects, we analyzed their role in the antiglycemic activity of curcumin. We quantified curcumin-induced release of glucagon-like peptide 1 (GLP-1) from mouse STC-1 cells that represent enteroendocrine L-cells as a major source of this anti-diabetic hormone. Curcumin induced secretion of GLP-1 in a dose-dependent manner. Two chemically stable analogues of curcumin that do not readily undergo degradation, were less active while two unstable analogues were active secretagogues. Chromatographically isolated spiroepoxide, an unstable oxidative metabolite of curcumin with anti-inflammatory activity, also induced secretion of GLP-1. Stable compounds like the final oxidative metabolite bicyclopentadione, and the major plasma metabolite, curcumin-glucuronide, were inactive. GLP-1 secretion induced by curcumin and its oxidative degradation products was associated with activation of PKC, ERK, and CaM kinase II. Since activity largely correlated with instability of curcumin and the analogues, we tested the extent of covalent binding to proteins in STC-1 cells and found it occurred with similar affinity as N-ethylmaleimide, indicating covalent binding occurred with nucleophilic cysteine residues. These results suggest that oxidative metabolites of curcumin are involved in the antiglycemic effects of curcumin. Our findings support the hypothesis that curcumin functions as a pro-drug requiring oxidative activation to reveal its bioactive metabolites that act by binding to target proteins thereby causing a change in function. (C) 2019 Elsevier B.V. and Societe Francaise de Biochimie et Biologie Moleculaire (SFBBM). All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据