4.6 Article

Mitochondria transfer via tunneling nanotubes is an important mechanism by which CD133+scattered tubular cells eliminate hypoxic tubular cell injury

期刊

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.bbrc.2019.11.006

关键词

Renal scattered CD133+tubular cells; Ischemic reperfusion injury; Mitochondria] transfer; Proliferation

资金

  1. National Natural Science Foundation of China [81900618, 81871149, 81601267]
  2. Shanghai Sailing Program [18YF1415000]

向作者/读者索取更多资源

Renal CD133 + scattered tubular cells (STCs) have been regarded as progenitor-like cells in the kidney and participated in ischemic renal injury repair. However, the mechanism of this effect is not fully elucidated yet. The primary objective of this study was to investigate the hypothesis that the protective effect of CD133 + STCs depends on the transfer of mitochondria to injured tubular cells in vitro. In this study, renal ischemic reperfusion injury (IRI) rat model was established with one side kidney ischemic for 45 min and animals were sacrificed at 48 h after operation. Tubular cells were isolated and cultured in vitro, and then CD133 + STCs were selected from the cultured cells. Then, CD133 + STCs were co-cultured with CD133-tubular cells (TECs) to detect the tunneling nanotubes like structures, and the transfer of mitochondria from CD133 + STCs to injured tubular cells were detected by fluorescent imaging and flow cytometry. Further, cellular protective effects of CD133 + STCs were tested when cultured with TECs under hypoxic conditions. In results, renal CD133 + STCs were scattered throughout the normal kidney and increased upon ischemic injury. Nanotube formations were commonly found between CD133 + STCs and TECs, and the transfer of mitochondria was detected from CD133 + STCs to TECs. Further, CD133 + STCs exist significant anti-apoptosis and pro-proliferation effects for TECs under hypoxic culture conditions. Thus, this study was first described that renal CD133 + STCs could transfer mitochondria to injured TECs in vitro for its protective effects, which revealed an important novel mechanism for renal repair after ischemic injury. (C) 2019 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据