4.6 Article

Synaptic properties of newly generated granule cells support sparse coding in the adult hippocampus

期刊

BEHAVIOURAL BRAIN RESEARCH
卷 372, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.bbr.2019.112036

关键词

Adult neurogenesis; Sparse coding; Hippocampus; Granule cells; Glutamatergic synapses; GABA receptors; NMDA receptors

资金

  1. Swiss National Science Foundation (SNSF) [31003A3_76321/1]

向作者/读者索取更多资源

In the adult hippocampus new neurons are continuously generated throughout life and integrate into the existing network via the formation of thousands of new synapses. Adult-born granule cells are known to improve learning and memory at about 3-6 weeks post mitosis by enhancing the brains ability to discriminate similar memory items. However, the underlying mechanisms are still controversial. Here we review the distinct functional properties of the newborn young neurons, including enhanced excitability, reduced GABAergic inhibition, NMDA-receptor dependent electrogenesis and enhanced synaptic plasticity. Although these cellular properties provide a competitive advantage for synapse formation, they do not generate 'hyperactivity' of young neurons. By contrast, in vivo evidence from immediate early gene expression and calcium imaging indicates that young neurons show sparse activity during learning. Similarly, in vitro data show a low number of high-impact synapses, leading to activation young cells by distinct subsets of afferent fibers with minimal overlap. Overall, the enhanced excitability of young cells does not generate hyperactivity but rather counterbalance the low number of excitatory input synapses. Finally, sparse coding in young neurons has been shown to be crucial for neurogenesis-dependent improvement of learning behavior. Taken together, converging evidence from cell physiology and behavioral studies suggests a mechanism that can explain the beneficial effects of adult neurogenesis on brain function.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据