4.6 Article

Intermediate-scale community-level flux of CO2 and CH4 in a Minnesota peatland: putting the SPRUCE project in a global context

期刊

BIOGEOCHEMISTRY
卷 129, 期 3, 页码 255-272

出版社

SPRINGER
DOI: 10.1007/s10533-016-0230-8

关键词

Carbon budget; Carbon dioxide; Methane; Peat; Picea; Sphagnum

资金

  1. U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC05-06OR23100]
  2. U.S. Department of Energy [DE-AC05-00OR22725]

向作者/读者索取更多资源

Peatland measurements of CO2 and CH4 flux were obtained at scales appropriate to the in situ biological community below the tree layer to demonstrate representativeness of the spruce and peatland responses under climatic and environmental change (SPRUCE) experiment. Surface flux measurements were made using dual open-path analyzers over an area of 1.13 m(2) in daylight and dark conditions along with associated peat temperatures, water table height, hummock moisture, atmospheric pressure and incident radiation data. Observations from August 2011 through December 2014 demonstrated seasonal trends correlated with temperature as the dominant apparent driving variable. The S1-Bog for the SPRUCE study was found to be representative of temperate peatlands in terms of CO2 and CH4 flux. Maximum net CO2 flux in midsummer showed similar rates of C uptake and loss: daytime surface uptake was -5 to -6 A mu mol m(-2) s(-1) and dark period loss rates were 4-5 A mu mol m(-2) s(-1) (positive values are carbon lost to the atmosphere). Maximum midsummer CH4-C flux ranged from 0.4 to 0.5 A mu mol m(-2) s(-1) and was a factor of 10 lower than dark CO2-C efflux rates. Midwinter conditions produced near-zero flux for both CO2 and CH4 with frozen surfaces. Integrating temperature-dependent models across annual periods showed dark CO2-C and CH4-C flux to be 894 +/- 34 and 16 +/- 2 gC m(-2) y(-1), respectively. Net ecosystem exchange of carbon from the shrub-forb-Sphagnum-microbial community (excluding tree contributions) ranged from -3.1 gCO(2)-C m(-2) y(-1) in 2013, to C losses from 21 to 65 gCO(2)-C m(-2) y(-1) for the other years.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据