4.6 Article

Connecting planet formation and astrochemistry A main sequence for C/O in hot exoplanetary atmospheres

期刊

ASTRONOMY & ASTROPHYSICS
卷 632, 期 -, 页码 -

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361/201936105

关键词

planets and satellites: composition; planets and satellites: atmospheres; planets and satellites: formation; astrochemistry; protoplanetary disks

资金

  1. European Union A-ERC grant [291141 CHEMPLAN]
  2. Netherlands Research School for Astronomy (NOVA)
  3. Royal Netherlands Academy of Arts and Sciences (KNAW)
  4. NSERC
  5. NSERC through PGS-D Alexander Graham Bell scholarship

向作者/读者索取更多资源

To understand the role that planet formation history has on the observable atmospheric carbon-to-oxygen ratio (C/O) we have produced a population of astrochemically evolving protoplanetary disks. Based on the parameters used in a pre-computed population of growing planets, their combination allows us to trace the molecular abundances of the gas that is being collected into planetary atmospheres. We include atmospheric pollution of incoming (icy) planetesimals as well as the effect of refractory carbon erosion noted to exist in our own solar system. We find that the carbon and oxygen content of Neptune-mass planets are determined primarily through solid accretion and result in more oxygen-rich (by roughly two orders of magnitude) atmospheres than hot Jupiters, whose C/O are primarily determined by gas accretion. Generally we find a main sequence between the fraction of planetary mass accreted through solid accretion and the resulting atmospheric C/O; planets of higher solid accretion fraction have lower C/O. Hot Jupiters whose atmospheres have been chemically characterized agree well with our population of planets, and our results suggest that hot-Jupiter formation typically begins near the water ice line. Lower mass hot Neptunes are observed to be much more carbon rich (with 0.33 less than or similar to C/O less than or similar to 1) than is found in our models (C/O similar to 10(-2)), and suggest that some form of chemical processing may affect their observed C/O over the few billion years between formation and observation. Our population reproduces the general mass-metallicity trend of the solar system and qualitatively reproduces the C/O metallicity anti-correlation that has been inferred for the population of characterized exoplanetary atmospheres.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据