4.5 Article

Adaptation of Campylobacter jejuni to biocides used in the food industry affects biofilm structure, adhesion strength, and cross-resistance to clinical antimicrobial compounds

期刊

BIOFOULING
卷 32, 期 7, 页码 827-839

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/08927014.2016.1198476

关键词

Campylobacter; biocides; antibiotic resistance; biofilm; adhesion; AFM

向作者/读者索取更多资源

The emergence of biocide-adapted Campylobacter jejuni strains that developed into biofilms and their potential to develop clinical resistance to antimicrobial compounds was studied. C. jejuni was grown in sub-lethal concentrations of five biocides used in the food industry. C. jejuni exhibited adaptation to these biocides with increased minimum inhibitory concentrations. The 3-D structures of the biofilms produced by the biocide-adapted cells were investigated by atomic force microscopy (AFM). The results revealed marked variability in biofilm architecture, including ice-crystal-like structures. Adaptation to the biocides enhanced biofilm formation, with significant increases in biovolume, surface coverage, roughness, and the surface adhesion force of the biofilms. Adaptation to commercial biocides induced resistance to kanamycin and streptomycin. This study suggests that the inappropriate use of biocides may lead to cells being exposed to them at sub-lethal concentrations, which can result in adaptation of the pathogens to the biocides and a subsequent risk to public health.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据