4.7 Article

How toxic is a non-toxic nanomaterial: Behaviour as an indicator of effect in Danio rerio exposed to nanogold

期刊

AQUATIC TOXICOLOGY
卷 215, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.aquatox.2019.105287

关键词

Nanogold; Zebrafish; Adverse outcomes pathway; Swimming behaviour

资金

  1. Department of Science and Technology in South Africa
  2. Ministry of Education, Culture, Sports, Science and Technology of Japan [24405004, 24248056, 26304043, 15H0282505, 15K1221305]
  3. foundation of JSPS Core to Core Program(AA Science Platforms)
  4. National Aquatic Bioassay Facility at North-West University, South Africa (NRF EQP Grant) [99024]
  5. [PG36150002]
  6. [PG36150003]

向作者/读者索取更多资源

Gold nanoparticles are used as drug delivery vectors based on the assumption that they have low toxicity. Literature has, however, produced conflicting results over the last few years. As such, this study aimed to investigate the toxicological effects of nanogold (nAu) on several indicators that range from subcellular to whole-organism level. Gene regulation, changes in oxidative stress biomarkers and swimming performance were assessed in Danio rerio (zebrafish) following exposures to nAu. Adult zebrafish were exposed in vivo to nAu for 96 h and swimming performance measured post-exposure. Liver tissue was collected for DNA microarray and Real-Time Polymerase Chain Reactions (RT-PCR) analyses to determine changes in gene expression (catalase, superoxide dismutase and metallothioneins) and protein biomarker analyses (catalase, superoxide dismutase, acetylcholine esterase, malondialdehyde, cellular energy allocation and metallothionein) were performed on whole-body samples. Swimming behaviour was assessed in 1.1 L Tecniplaset (TM) tanks for a period of six hours and videos were analysed using Noldus EthoVision software. Critical swimming speed was measured in a Loligo (R) swimming tunnel. The DNA microarray revealed that fish exposed to 20 mg/L differed most from the control group. At 20 mg/L there was a significant increase in gene expression for all genes analysed but this didn't translate to significant responses in protein biomarker levels except for an increase in protein carbonyl formation. The behaviour results demonstrated significant changes in distance moved, swimming speed, acceleration bouts, zone alterations and time spent within the top zone - responses that are usually observed in fish responding to toxicological stress. Furthermore, the critical swimming speed of exposed fish was decreased significantly compared to the control. Since swimming performance and social interaction among zebrafish is essential to their survival, whole-organism behaviour that suggests a toxicological response after exposure to nAu is in agreement with the genetic responses measured in this study.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据