4.7 Article

Development and thermal performance of a vapor chamber with multi-artery reentrant microchannels for high-power LED

期刊

APPLIED THERMAL ENGINEERING
卷 166, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.applthermaleng.2019.114686

关键词

High-power LED; Thermal management; Vapor chamber; Multi-artery reentrant microchannels

资金

  1. National Nature Science Foundation of China [51775464]
  2. Science and Technology Planning Project of Guangdong Province, China [2017A010104002]
  3. Science and Technology Planning Project for Industry-University-Research Cooperation in Huizhou City [2014B050013002]
  4. Research Fund of Guangdong Key Laboratory of Precision Equipment and Manufacturing Technique [PEMT201903]

向作者/读者索取更多资源

This study developed a vapor chamber (VC) with radial multi-artery reentrant microchannels for thermal management of high-power light emitting diodes (LEDs). It featured Omega-shaped reentrant microchannels inside porous wicks to provide separated flow passages for vapor and liquid flow. It was integrated with a high-power LED module for fast heat dissipation and efficient thermal management. Experiments were systematically conducted to evaluate thermal performance of the VC for a wide range of input power of LEDs, air flow rates and inclination angles of LED module. The VC was compared to a copper plate heat sink in the same operation conditions. Results show that compared to the copper plate, the VC presented a faster temperature rise, and was earlier to reach equilibrium state. The VC reduced the substrate surface temperature of LED module for 7-27%, and introduced a reduction in the thermal resistance for 19-48%, indicating that the VC enhanced cooling capacity remarkably and yield a notable favorable performance for the heat dissipations of LEDs. The thermal performance of the VC was significantly dependent on the input power of LEDs and air flow rates, whereas the inclination angle of LED module showed negligible effects on thermal performance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据