4.7 Article Proceedings Paper

Effect of rapid thermal annealing of copper indium aluminium gallium diselenide solar cell devices and its deposition challenges

期刊

APPLIED SURFACE SCIENCE
卷 493, 期 -, 页码 105-111

出版社

ELSEVIER
DOI: 10.1016/j.apsusc.2019.06.279

关键词

CIAGS absorber; Rapid thermal annealing; Co-evaporation; Thinfilm solar cells

资金

  1. Department of Energy SunShot grant [DEEE0005319]
  2. National Science Foundation (NSF) through the National Nano Coordinated Infrastructure Network (NNCI) [ECCS1542202]
  3. Initiative for Renewable Energy & the Environment - University of Minnesota
  4. NSF

向作者/读者索取更多资源

Thin-film photovoltaic research based on ternary or quaternary absorber materials has mainly concentrated on copper (indium/gallium) diselenide, CuInxGa1-xSe2 (CIGS). This material has demonstrated exceptional energy conversion efficiencies. By altering the In/Ga ratio the band gap can be varied from 1.02 eV (for CuInSe2) to 1.68 eV (for CuGaSe2). However, research from leading groups showed that cells have maximum efficiency at or below 1.35 eV. This paper reports the challenges of using aluminium alloyed CIGS deposited with a single step co-evaporation method. Adding aluminium is found to reduce the bulk trap state density for wide gap devices. However, it created significant safety issues when compared to conventional CIGS co-evaporation deposition systems. The release of H2Se when moisture comes in contact with aluminium selenide was resolved by placing exhaust lines at various places of the deposition chamber. A single phase CIAGS device with a bandgap of 1.30 eV was prepared using a co-evaporation method. The fabricated solar cell devices with CIAGS absorber layers and resulted in a photoconversion efficiency of 10.3%. A progressive rapid thermal annealing at various temperature resulted in a 10% increase in the overall efficiency at 300 degrees C. The efficiencies were reduced when the RTA temperature increased above 300 degrees C.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据