4.7 Article

Direct electrodeposition of platinum nanoparticles@graphene oxide@nickel-copper@nickel foam electrode as a durable and cost-effective catalyst with remarkable performance for electrochemical hydrogen evolution reaction

期刊

APPLIED SURFACE SCIENCE
卷 505, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.apsusc.2019.144571

关键词

Hydrogen evolution reaction; Pt nanoparticles; GO nanolayers; Electrocatalytic stability; Volmer-Heyrovsky mechanism

向作者/读者索取更多资源

Development of high-performance catalyst materials with superior activity is among the high challenges in hydrogen production. In this study, the platinum nanoparticles@graphene oxide@nickel-copper@nickel foam (Pt@GO@Ni-Cu@NF) electrode was fabricated using the electrodeposition method. The synthesized electrode demonstrated a high electrocatalytic activity and superior stability in alkaline solution. The required over-potentials for delivering 10, 20, and 100 mA cm(-2) were 31, 50, and 128 mV vs. RHE, respectively. The hydrogen evolution reaction (HER) mechanism, affording to the Tafel slope (51 mV dec(-1)), was Volmer-Heyrovsky mechanism. The electrode was stable at 100 mA cm(-2) after 50 h. The high stability and electrocatalytic activity for HER of the Pt@GO@Ni-Cu@NF electrode were assigned to the dendrite Ni-Cu structure and the high electrochemical surface area of the GO nanolayers (2600), as well as its hydrophilic properties, intrinsic properties of the Pt nanoparticles with a dimension of 20-40 nm, and lower H-2 bubble size. Because of the excellent electrocatalytic activity and stability, this study introduces an effective electrode material for the large-scale hydrogen production industry.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据