4.7 Article

Comprehensive understanding of the formation process on monodisperse resorcinol-formaldehyde polymer and carbon spheres and their use as substrates for surface-enhanced Raman spectroscopy

期刊

APPLIED SURFACE SCIENCE
卷 506, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.apsusc.2019.144591

关键词

Polymer spheres; Microstructure; Formation mechanism; Self-assembly; Surface-enhanced Raman spectroscopy

资金

  1. National Natural Science Foundation of China [51872033, 51732007]
  2. fundamental research funds for central universities [N180212009]

向作者/读者索取更多资源

The synthesis of nitrogen-doped polymer (resorcinol-formaldehyde) and carbon spheres (denoted as N-RFS and N-CS, respectively) was carried out via an alkaline-based condensation reaction, with emphasis on high monodispersibility and precise size control. The particle size can be controlled in the range of 0.16-1.8 mu m by simply adjusting the experimental conditions, i.e., the concentrations of the monomers including resorcinol and formaldehyde, the reaction temperature, the methanol volume fraction and the concentration of a catalyst/nitrogen source (ammonia hydroxide). The correlations between the synthetic conditions and the particle size are established and elucidate the mechanism of the particle size control, in turn enabling prediction of the particle size at a set experimental parameter. Due to the outstanding thermal stability of N-RFS, the converted N-CS can be generated uniformly with high yield. With their high monodispersity, versatile synthesis procedure and close-packing ability, both the N-RFS and their corresponding N-CS in this work may offer remarkable flexibility in the design of periodic arrayed substrates for surface-enhanced Raman spectroscopy (SERS).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据