4.7 Article

Effect of fuel content on the electrocatalytic methanol oxidation performance of Pt/ZnO nanoparticles synthesized by solution combustion

期刊

APPLIED SURFACE SCIENCE
卷 492, 期 -, 页码 73-81

出版社

ELSEVIER
DOI: 10.1016/j.apsusc.2019.06.213

关键词

Platinum; Zinc; Glycine; Direct methanol fuel cell and solution combustion synthesis

资金

  1. NPRP grant from the Qatar National Research Fund (a member of Qatar Foundation) [NPRP8-509-2-209]

向作者/读者索取更多资源

We report the effect of combustion synthesis conditions on Pt nanoparticle (NP) supported on ZnO (Pt/ZnO) electrocatalysts for methanol oxidation reaction (MOR). The Pt/ZnO NPs are prepared by solution combustion synthesis (SCS) using metal nitrate precursors and glycine fuel, which is varied with a fixed Pt:Zn ratio at 1:1 for fuel-high (Pt/ZnO (H)) and fuel-low (Pt/ZnO (L)) electrocatalysts. X-ray diffractometry, transmission electron microscopy and scanning electron microscopy are used for crystallite size, particle distribution and elemental composition studies, respectively. High angle annular dark field-scanning transmission electron microscopy attached to energy dispersive X-ray spectroscopy was used for elemental distribution in Pt/ZnO NPs and X-ray photoelectron spectroscopy (XPS) was used to identify the surface composition and electronic state of the elements. Cyclic voltammetry is applied for the electrocatalysis of CH3OH in an alkaline medium, which reveals that Pt/ZnO (H) system has an improved MOR activity in comparison to commercial Pt/C. The onset potential of MOR on Pt/ZnO is earlier than that of Pt/C. The stability test conducted by chronoamperometry on Pt/ZnO and Pt/C shows a stable high current density for Pt/ZnO (H) compared to Pt/C and Pt/ZnO (L). The crystallite size, surface morphology and the electrochemical properties of Pt/ZnO samples are affected by the variation in the fuel amount during synthesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据