4.6 Article Retracted Publication

被撤回的出版物: Study of effect of Gd substitution at the Fe site on structural, dielectric and electrical characteristics of BiFeO3 (Retracted article. See vol. 128, 2022)

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s00339-019-3058-y

关键词

-

资金

  1. SERB-DST, Government of India, New Delhi [EMR/2015/002420]

向作者/读者索取更多资源

In this communication, the effect of gadolinium (Gd) substitution on structural, microstructural, electrical and dielectric properties of bismuth ferrite BiFeO3 (i.e. Bi(Fe0.95Gd0.05)O-3 abbreviated as BFGO5) has been reported. The development of an environment-friendly lead-free multiferroic material by substituting a rare earth element at the uncommon site of BiFeO3 (BFO) (i.e. Gd at the Fe site rather than commonly preferred Bi site) for the tailoring of its multiferroic properties has been attempted in this study. The present studied material has been fabricated through a conventional standard solid-state reaction (SSR) method using carbonates and high-quality oxides in a stoichiometric amount. The phase formation and basic crystal data were analysed by X-ray diffraction technique which shows a single-phase formation of BFGO5 material in orthorhombic symmetry. The average crystallite size was calculated using Scherrer's formula and found to be 84 nm. The surface morphology and compositions examined by FE-SEM, EDX, FT-IR and TEM show the formation of highly compact sample with uniform distribution of grains. Detailed studies of dielectric parameters (dielectric constant and tangent loss) in a selected frequency range (1-1000 kHz) at different temperatures (273-773 K) clearly exhibit enhancement on dielectric properties of BFO. Studies of its impedance spectroscopy, electrical modulus and electrical conductivity confirm the semiconductor behaviour [negative temperature coefficient of resistance (NTCR)] and non-Debye type relaxation process of the material. The polarization versus electric field (P-E) analysis of BFGO5 shows an improvement in remnant polarization as compared to the parent compound BFO. Therefore, based on the several investigations of results, the BFGO5 material could be considered as a favourable candidate for electronic device applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据