4.7 Article

An adaptive integration scheme for heat conduction in additive manufacturing

期刊

APPLIED MATHEMATICAL MODELLING
卷 75, 期 -, 页码 787-805

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.apm.2019.07.008

关键词

Heat conduction; Numerical integration; Additive manufacturing; Solidification

资金

  1. U.S. Department of Energy [DE-AC05-000R22725]
  2. U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office
  3. Office of Electricity Delivery and Energy Reliability (OE) - Transformer Resilience and Advanced Components (TRAC) Program, The United States Government
  4. Department of Energy

向作者/读者索取更多资源

Solidification dynamics are important for determining final microstructure in additively manufactured parts. Recently, researchers have adopted semi-analytical approaches for predicting heat conduction effects at length and time scales not accessible to complex multi-physics numerical models. The present work focuses on improving a semi-analytical heat conduction model for additive manufacturing by designing an adaptive integration technique. The proposed scheme considers material properties, process conditions, and the inherent physical behavior of the transient heat conduction around both stationary and moving heat sources. Both the adaptive integration scheme and a technique for calculating only the points within the melt pools are described in detail. The full algorithm is then implemented and compared against a simple Riemann sum integration scheme for a variety of cases that highlight process and material variations relevant to additive manufacturing. The new scheme is shown to have significant improvements in computational efficiency, solution accuracy, and usability. (C) 2019 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据