4.8 Article Proceedings Paper

Identifying long-term effects of using hydropower to complement wind power uncertainty through stochastic programming

期刊

APPLIED ENERGY
卷 253, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2019.113535

关键词

Hydropower operation; Wind energy; Power output uncertainty; Stochastic programming; Effect evaluation

资金

  1. National Key Technologies R&D Program of China [2016YFC0400909]
  2. National Natural Science Foundation of China [51609062]
  3. Fundamental Research Funds for the Central Universities [2018B10514]
  4. China Postdoctoral Science Foundation [2018T110525]

向作者/读者索取更多资源

Integrated operation of hydropower and wind power, which exploites the former's regulation flexibility to complement the uncertainty of the latter, enhances the utilization efficiency of wind power at the expense of deteriorating long-term hydropower energy production. This study identified the tradeoff effects of hydro-wind integrated operation by establishing a framework of coupling models. A martingale model that captures the evolution of forecasting uncertainty was used to generate synthetic scenarios of uncertain load demand. A stochastic programming model for integrated operation was established by tracking the influence of wind power uncertainty. A deterministic simulation model for independent operation was developed to derive independent operation strategies. By comparing the differences in operation strategies systematically, we analyzed the optimization and influencing mechanisms through groups of numerical experiments. A hypothetical case study based on the operation of the electrical system of the Three Gorges Dam project in China during the drawdown season revealed the following. (1) The positive effect of reducing wind energy shortfall and curtailment is determined by the ability of regulated hydropower to track the uncertainty of wind power output. (2) The negative effect primarily reduces the end storage and the stored energy of hydropower, thereby increasing the risk of future water/energy shortages and reducing reliability. (3) The positive effect on wind power presents a varied regime, whereas the negative effect on hydropower increases (decreases) with uncertainty level and inflow level (as the initial reservoir storage increases). The proposed methodology provides new insights into quantifying the effects of hybrid hydro-wind operation to inform decision-making.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据