4.8 Article

Joint estimation of lithium-ion battery state of charge and capacity within an adaptive variable multi-timescale framework considering current measurement offset

期刊

APPLIED ENERGY
卷 253, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2019.113619

关键词

Lithium-ion battery; Current measurement offset; State of charge; Battery capacity; Joint estimation; Adaptive variable multi-timescale

资金

  1. National Natural Science Foundation of China (NSFC) [51677136]
  2. National Key Research and Development Program of China [2017YFB0103105]

向作者/读者索取更多资源

Accurate and reliable estimation of battery state of charge (SOC) and capacity is essential for the management of the lithium-ion battery in electric vehicles. In this paper, a novel joint estimation approach of battery SOC and capacity with an adaptive variable multi-timescale framework is proposed, which also deals with the interference of current measurement offset (CMO) effectively. Aiming at the problem of unknown CMO, which will affect the accuracy of battery modeling and state estimation, an original two-stage recursive least squares algorithm is raised to identify the battery model parameters and the CMO quickly. The adaptive extended Kalman filter is applied to improve the SOC estimation accuracy by updating the noise covariance adaptively, and the recursive total least squares is used to estimate capacity with the consideration that both the battery SOC estimation and charge accumulation suffer from noises. Finally, a joint estimation of SOC and capacity structure is founded, and to address the issue of different varying characteristics of battery SOC and capacity, a novel adaptive variable multi-timescale framework is proposed. The experimental results indicate the accuracy, convergence, and adaptivity of the proposed method in different working conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据